Pore Narrowing of Mesoporous Silica Materials
نویسندگان
چکیده
To use mesoporous silicas as low-k materials, the pore entrances must be really small to avoid diffusion of metals that can increase the dielectric constant of the low-k dielectric. In this paper we present a new method to narrow the pores of mesoporous materials through grafting of a cyclic-bridged organosilane precursor. As mesoporous material, the well-studied MCM-41 powder was selected to allow an easy characterization of the grafting reactions. Firstly, the successful grafting of the cyclic-bridged organosilane precursor on MCM-41 is presented. Secondly, it is demonstrated that pore narrowing can be obtained without losing porosity by removing the porogen template after grafting. The remaining silanols in the pores can then be end-capped with hexamethyl disilazane (HMDS) to make the material completely hydrophobic. Finally, we applied the pore narrowing method on organosilica films to prove that this method is also successful on existing low-k materials.
منابع مشابه
Toward a facile synthesis of spherical sub-micron mesoporous silica: Effect of surfactant concentration
In this paper, a facile method for preparing sub-micron spherical mesoporous silica by the sol-gel process and cationic surfactant cetyltrimethylammonium bromide (CTAB) as a soft template was reported. Moreover, the effect of surfactant concentration on the specific surface area and the total pore volume was investigated. The specific surface area, pore characteristic, morphology, chemical comp...
متن کاملModulation of microporous/mesoporous structures in self-templated cobalt-silica
Finite control of pore size distributions is a highly desired attribute when producing porous materials. While many methodologies strive to produce such materials through one-pot strategies, oftentimes the pore structure requires post-treatment modification. In this study, modulation of pore size in cobalt-silica systems was investigated by a novel, non-destructive, self-templated method. These...
متن کاملProgress of the Application of Mesoporous Silica-Supported Heteropolyacids in Heterogeneous Catalysis and Preparation of Nanostructured Metal Oxides
Mesoporous silica molecular sieves are a kind of unique catalyst support due to their large pore size and high surface area. Several methods have been developed to immobilize heteropolyacids (HPAs) inside the channels of these mesoporous silicas. The mesoporous silica-supported HPA materials have been widely used as recyclable catalysts in heterogeneous systems. They have shown high catalytic a...
متن کاملMesoporous Silica Nanoparticles (MSN): A Nanonetwork and Hierarchical Structure in Drug Delivery
According to IUPAC nomenclature, mesoporous materials are those materials having a pore size ranging from 2 to 50nm in diameter [1-6]. Mesoporous silica nanoparticles (MSNs) are promising and novel drug vehicles due to their unique mesoporous structure, which preserve a level of chemical stability, surface functionality and biocompatibility and ensure controlled release and targeted delivery of...
متن کاملSynthesis of mesoporous silica particles with control of both pore diameter and particle size
During last years the interest for nanotechnology and mesoporous silica materials has increased due to benefits that these materials can provide. Typical characteristics of mesoporous materials are a large surface area and pore volume, well-ordered and uniform pores with adjustable pores between 2 and 50 nm. Pore dimensions are comparable to many biological molecules, like enzymes, and may ther...
متن کامل